

Developing a component-based framework for subsurface
simulation using the Common Component Architecture

Bruce Palmer1, Yilin Fang1, Vidhya Gurumoorthi1, Glenn Hammond1, James
Fort1 and Tim Scheibe1

Pacific Northwest National Laboratory,
PO Box 999 Richland WA 99352

E-mail: bruce.palmer@pnl.gov

Abstract. This paper will provide a brief overview of two frameworks being developed for
subsurface simulations. The first is based on the Smoothed Particle Hydrodynamics algorithm
and is designed to model flow and transport at the pore scale. The second is based on the
Subsurface Transport Over Multiple Phases subsurface continuum code (STOMP) and is
designed to simulate flow at the Darcy scale. Both frameworks have been built using the
Common Component Architecture toolkit. These frameworks will eventually be combined into
a single framework for performing hybrid multiscale simulations that seamlessly integrate both
the particle and continuum simulations together.

1. Introduction
The increasing complexity of computer simulations, coupled with continuing changes in libraries,
algorithms, computer architectures, and operating systems, is making the process of developing and
maintaining code to perform high-end computations increasingly difficult. The traditional model of
monolithic code development, in which all aspects of programming are handled by a relatively small
and homogeneous group of programmers, is breaking down in the face of increasingly complex
simulation requirements related to communication, I/O, linear algebra, grid management,
visualization, solvers, etc. This paper will describe the decomposition of two codes into components
using the Common Component Architecture toolkit[1]. This includes a Smoothed Particle
Hydrodynamics (SPH) code, based on a Lagrangian formulation of the hydrodynamic equations [2],
that is used for pore scale simulations of fluid flow in topologically complex configurations and a
Darcy-scale continuum code used to simulate subsurface flow using finite volume numerical
techniques[3,4]. The long term goal of this project is to couple the Lagrangian and continuum
approaches into a single hybrid multiscale simulation of subsurface flow.

The components themselves are patterned after principles developed in object-oriented
programming. Individual components represent a collection of subroutines or functions along with
some internal data representing state. Data is communicated between components using explicit calls,
no data is shared between components by sharing common data structures. The CCA toolkit itself
supports this encapsulation, as well as providing other user services such as runtime configurability
and language interoperability[5].

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012064 doi:10.1088/1742-6596/180/1/012064

c© 2009 IOP Publishing Ltd 1

2. Reducing dependencies between components
A key feature of our strategy for creating components with minimal dependencies between them is to
use a data dictionary and associated metadata to allow individual components to identify necessary
data from a common data pool without explicit exchanges of information. At the start of the
simulation, all components that generate data arrays that might be used by other components allocate
memory for these arrays and deposit pointers to them in a data manager, along with associated meta-
data. The meta-data consists of attributes that allow other components to determine whether the data is
something that they can use. The combination of a data pointer and associated meta-data comprises an
entry into the data dictionary. All entries in the data dictionary are interpreted in the same way by
components in the application. For example, a data element representing the x velocities of particles
located on a processor will be interpreted as such by all components. Some components, such as the
component responsible for performing the time integration of particle coordinates, may recognize the
x velocity as something it particularly needs to execute its function, but other components, such as the
component for exporting a system snapshot, may treat the x velocity as just another particle property
that should be included in the output.

A second mechanism for reducing dependencies is to provide input to each component directly
from the user, instead of having all the input directives read by a single “driver” program and then
delivering them to other components by passing them through the call stack. Alternatively, the driver
can store the directives in globally accessible variables, but both methods can lead to dependencies
between otherwise unrelated components. Having each component read its input directly from an
external source eliminates these dependencies, although it may be cumbersome to require multiple
independent files to run a single simulation. To simplify the input and allow users to include all input
directives in a single file, a “read input” component was created that reads an input file that has been
divided up into blocks with each block directed at a single component. The individual blocks have the
form

input component1
….
….

end
Component 1 can retrieve the input data between the delimiters “input” and “end” by making a
request to the input component for the block of input text corresponding to “component1”. This text
block can then be parsed using whatever mechanisms the author of component 1 wishes to use. The
input supplies a number of functions that can be useful for parsing input, but if other code already
exists for reading the input, it can be used instead. The input component itself is fairly neutral with
respect to input formats and, apart from requiring the delimiters input and end, supports any kind of
input (e.g. keyword-value, formatted, etc.).

The elimination of dependencies using these two concepts is best illustrated by looking at the
remapping component in the SPH framework. The remapping component starts with data associated
with particles, which may be randomly distributed in space, and interpolates the data onto a regular
grid so that it can be exported in a format used by standard visualization software. To execute the
remapping function, the component needs the x, y, z coordinates of all particles and it gets these from
the data manager by looking for entries called ‘xcoord’, ‘ycoord’, ‘zcoord’. These arrays are
required by the remapping component in order for it to work so it looks for them specifically in the
data manager. Everything else that the remapping component uses is specified by the user. The user
may specify in the remap input block that they want to visualize the velocity vector with components
‘xvel’, ‘yvel’, and ‘zvel’ as well as the concentration field ‘conc’. After parsing the input block
and extracting these names, the remap component will then check the data manager to see if there are
fields with these names available. The remap component then caches pointers to these fields and will
write the corresponding data to a visualization file whenever called upon to do so.

Most components contain an initialization method, which is called at calculation startup and allows
each component to find the data it will use in the remaining simulation. Most components also contain

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012064 doi:10.1088/1742-6596/180/1/012064

2

a “do something” method that causes the component to execute its function whenever it is called. In
the case of the remap component, this method causes the remap component to interpolate the user
specified data onto a regular grid and then write the values out to a file for subsequent analysis and
visualization.

3. The Smoothed Particle Hydrodynamics framework
The SPH framework is fairly well-developed
and supports considerable functionality. It is
also mature enough that new physics and
chemistry can be added to it by focussing on
modifying only a few routines. The
remainder of the components in the
framework can remain untouched. A “wiring
diagram” of an SPH application is shown in
Figure 1.

The diagram shows a driver component at
the left that is responsible for controlling
overall program flow, a set of components in
the middle that are responsible for reading
and writing particle configurations and
integrating the particle equations of motion
and a variety of components on the right that
provide support functions and define the
model physics and chemistry. The Lagrange

component is the communication layer used to
parallelize the SPH application. It is built with the
Global Arrays communication library[6] and is used by
a large number of the other components, the ReadFile
and DataMgr components supply the input and data
manager capabilities described above, and the
ERSPChem and the SPHFrcAt components are
responsible for implementing the chemistry and physics
models that the application is simulating. Adding new
models to the framework should only require
modifications or new versions of the force and
chemistry components.

An example of a simulation performed using the
SPH framework is shown in Figure 2. This simulation
contains approximately 14 million particles and
represents transport of a non-reactive contaminant
through a porous medium generated from a Monte
Carlo simulation of 250 hard spheres. The figure shows
an isosurface of concentration after the contaminant has
traversed approximately halfway through the simulation
cell (flow is in the z-direction). These simulations are
being used to determine the effective transport constants
for contaminant transport in subsurface simulations.
Additional models that are under development include a
simulation of uranium transport in porous media that
includes the effects of intragranular diffusion.

Figure 2. Simulation of non-reactive
contaminant transport using SPH
framework. Porous media surface is in
green, isosurfaces of velocity are red
and isosurfaces of concentration are
blue. The visualization is done using
the VisIt parallel software package.

Figure 1. Schematic diagram of SPH application
built from components.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012064 doi:10.1088/1742-6596/180/1/012064

3

4. The STOMP framework
Work has also been underway to develop a component version of the Subsurface Transport Over
Multiple Phases (STOMP) subsurface simulation code[3,4]. This is a continuum code designed to
perform simulations at the Darcy scale. The degree of componentization is not nearly as advanced as
for the SPH framework, but a major objective has been achieved by splitting out the grid from the rest
of the STOMP code as a separate component. At present, the STOMP framework contains only two
components. One is the grid component and the second is a physics component that contains the rest
of the STOMP code.

The grid component contains much of the input associated with problem setup and is responsible
for creating the grid and adding all the fields required by the simulation to the grid. The grid

component supports an
unstructured syntax,
although currently it is only
implemented for a structured
grid. The data mapping
block refers to the necessity
of mapping from a structured
grid to an unstructured
syntax. At some point in the
future, if the grid component
is reimplemented using an
unstructured grid library, it
should be possible to plug
this into the existing
framework with only modest
modifications to the
remaining components.
Several additional
components in the remaining
STOMP code have been
identified and work is

underway to separate these from the main code. They include components for physics, chemistry,
solvers, input, and output. The existing STOMP framework with possible future components is
illustrated schematically in Figure 3.

A simulation of contaminant transport at the Hanford IFRC site performed with the existing
STOMP framework is shown in Figure 4. The figure shows the migration of a plume through an array
of monitoring wells.

Figure 4. STOMP simulation of contaminant transport through an array
of monitoring wells at the Hanford IFRC site.

STOMP Component
GridPort

Solvers

Output

Physics

Chemistry

Time
Integration

Grid Component
GridPort

Input

Data Mapping

Figure 3. Schematic diagram of STOMP framework. Green boxes
indicate future components that are currently contained within
existing components.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012064 doi:10.1088/1742-6596/180/1/012064

4

Although the existing STOMP framework does not make use of an explicit data manager, the grid
component can act in a similar way and many of the data concepts outlined above have been
incorporated into it.

5. Summary
The frameworks described above demonstrate the feasibility of creating component-based applications
that have a high degree of functional encapsulation, minimal dependencies between components, and
still maintain high performance. An example of how this can increase programmer productivity is the
development in the SPH framework of multiple force and input components that can be interchanged
with each other without modifications to other components. The frameworks were implemented using
the CCA toolkit, which allows users to configure the application at runtime and supports language
interoperability between components. The SPH framework has exploited this feature by having
components written in F90, C, and C++.

The componentization of the individual SPH and STOMP frameworks is expected to support the
next stage of this project, which is to integrate these two simulation approaches into a single hybrid
multiscale simulation that couples a pore scale description using the SPH algorithm with a Darcy scale
simulation using STOMP. This will require extensions to the existing data model and a more robust
version of the data manager, as well as development of appropriate coupling components that will link
the two models together into a single application.

Acknowledgments
The authors are indebted to the CCA development team for its support and help on issues related to
building and using the CCA toolkit as well as to Karen Schuchardt for useful discussions. This
research is supported by the U. S. Department of Energy's Office of Science under the Scientific
Discovery through Advanced Computing (SciDAC) program. A portion of this research was
performed using the Molecular Science Computing Facility at EMSL, a national scientific user facility
sponsored by the Department of Energy's Office of Biological and Environmental Research and
located at Pacific Northwest National Laboratory.

References
[1] Allan BA, R Armstrong, DE Bernholdt, F Bertrand, K Chiu, TL Dahlgren, K Damevski, WR
Elwasif, TGW Epperly, M Govindaraju, DS Katz, JA Kohl, M Krishnan, JW Larson, S Lefantzi, MJ
Lewis, AD Malony, LC McInnes, J Nieplocha, B Norris, SG Parker, J Ray, S Shende, TL Windus, SJ
Zhou. (2006) A Component Architecture for High-Performance Scientific Computing Int. J. High
Perf. Comput. Applications 20 163-202.

[2] Monaghan, JJ. (2005) Smoothed particle hydrodynamics Rep. Prog. Phys. 68 1703-1759.

[3] White, M. D., and M. Oostrom (2000), STOMP Subsurface Transport Over Multiple Phases
Version 2.0 Theory Guide, PNNL‐12030, 235 pp., Pacific Northwest Natl. Lab., Richland, Wash.

[4] White, M. D., and M. Oostrom (2006), STOMP Subsurface Transport Over Multiple Phases
Version 4.0 User’s Guide, PNNL‐15782, 120 pp., Pacific Northwest Natl. Lab., Richland, Wash.

[5] Kohn, S, G Kumfert, J Painter, C Ribbens, Divorcing Language Dependencies from a Scientific
Software Library, 10th SIAM Conference on Parallel Processing, Portsmouth, VA, March 12-14, 2001.

[6] Nieplocha, J, B Palmer, V Tipparaju, M Krishnan, H Trease, E Apra. (2006) Advances,
Applications and Performance of the Global Arrays Shared Memory Programming Toolkit Int. J. High
Perf. Comput. Applications 20 203-231.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012064 doi:10.1088/1742-6596/180/1/012064

5

