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Abstract. This paper will provide a brief overview of two frameworks being developed for 
subsurface simulations. The first is based on the Smoothed Particle Hydrodynamics algorithm 
and is designed to model flow and transport at the pore scale. The second is based on the 
Subsurface Transport Over Multiple Phases subsurface continuum code (STOMP) and is 
designed to simulate flow at the Darcy scale. Both frameworks have been built using the 
Common Component Architecture toolkit. These frameworks will eventually be combined into 
a single framework for performing hybrid multiscale simulations that seamlessly integrate both 
the particle and continuum simulations together. 

1.  Introduction 
The increasing complexity of computer simulations, coupled with continuing changes in libraries, 
algorithms, computer architectures, and operating systems, is making the process of developing and 
maintaining code to perform high-end computations increasingly difficult. The traditional model of 
monolithic code development, in which all aspects of programming are handled by a relatively small 
and homogeneous group of programmers, is breaking down in the face of increasingly complex 
simulation requirements related to communication, I/O, linear algebra, grid management, 
visualization, solvers, etc. This paper will describe the decomposition of two codes into components 
using the Common Component Architecture toolkit[1]. This includes a Smoothed Particle 
Hydrodynamics (SPH) code, based on a Lagrangian formulation of the hydrodynamic equations [2], 
that is used for pore scale simulations of fluid flow in topologically complex configurations and a 
Darcy-scale continuum code used to simulate subsurface flow using finite volume numerical 
techniques[3,4]. The long term goal of this project is to couple the Lagrangian and continuum 
approaches into a single hybrid multiscale simulation of subsurface flow. 

The components themselves are patterned after principles developed in object-oriented 
programming. Individual components represent a collection of subroutines or functions along with 
some internal data representing state. Data is communicated between components using explicit calls, 
no data is shared between components by sharing common data structures. The CCA toolkit itself 
supports this encapsulation, as well as providing other user services such as runtime configurability 
and language interoperability[5]. 
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2.  Reducing dependencies between components 
A key feature of our strategy for creating components with minimal dependencies between them is to 
use a data dictionary and associated metadata to allow individual components to identify necessary 
data from a common data pool without explicit exchanges of information. At the start of the 
simulation, all components that generate data arrays that might be used by other components allocate 
memory for these arrays and deposit pointers to them in a data manager, along with associated meta-
data. The meta-data consists of attributes that allow other components to determine whether the data is 
something that they can use. The combination of a data pointer and associated meta-data comprises an 
entry into the data dictionary. All entries in the data dictionary are interpreted in the same way by 
components in the application. For example, a data element representing the x velocities of particles 
located on a processor will be interpreted as such by all components. Some components, such as the 
component responsible for performing the time integration of particle coordinates, may recognize the 
x velocity as something it particularly needs to execute its function, but other components, such as the 
component for exporting a system snapshot, may treat the x velocity as just another particle property 
that should be included in the output. 

A second mechanism for reducing dependencies is to provide input to each component directly 
from the user, instead of having all the input directives read by a single “driver” program and then 
delivering them to other components by passing them through the call stack. Alternatively, the driver 
can store the directives in globally accessible variables, but both methods can lead to dependencies 
between otherwise unrelated components. Having each component read its input directly from an 
external source eliminates these dependencies, although it may be cumbersome to require multiple 
independent files to run a single simulation. To simplify the input and allow users to include all input 
directives in a single file, a “read input” component was created that reads an input file that has been 
divided up into blocks with each block directed at a single component. The individual blocks have the 
form 

input component1 
…. 
…. 

end 
Component 1 can retrieve the input data between the delimiters “input” and “end” by making a 
request to the input component for the block of input text corresponding to “component1”. This text 
block can then be parsed using whatever mechanisms the author of component 1 wishes to use. The 
input supplies a number of functions that can be useful for parsing input, but if other code already 
exists for reading the input, it can be used instead. The input component itself is fairly neutral with 
respect to input formats and, apart from requiring the delimiters input and end, supports any kind of 
input (e.g. keyword-value, formatted, etc.). 

The elimination of dependencies using these two concepts is best illustrated by looking at the 
remapping component in the SPH framework. The remapping component starts with data associated 
with particles, which may be randomly distributed in space, and interpolates the data onto a regular 
grid so that it can be exported in a format used by standard visualization software. To execute the 
remapping function, the component needs the x, y, z coordinates of all particles and it gets these from 
the data manager by looking for entries called ‘xcoord’, ‘ycoord’, ‘zcoord’. These arrays are 
required by the remapping component in order for it to work so it looks for them specifically in the 
data manager. Everything else that the remapping component uses is specified by the user. The user 
may specify in the remap input block that they want to visualize the velocity vector with components 
‘xvel’, ‘yvel’, and ‘zvel’ as well as the concentration field ‘conc’. After parsing the input block 
and extracting these names, the remap component will then check the data manager to see if there are 
fields with these names available. The remap component then caches pointers to these fields and will 
write the corresponding data to a visualization file whenever called upon to do so. 

Most components contain an initialization method, which is called at calculation startup and allows 
each component to find the data it will use in the remaining simulation. Most components also contain 
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a “do something” method that causes the component to execute its function whenever it is called. In 
the case of the remap component, this method causes the remap component to interpolate the user 
specified data onto a regular grid and then write the values out to a file for subsequent analysis and 
visualization. 

3.  The Smoothed Particle Hydrodynamics framework 
The SPH framework is fairly well-developed 
and supports considerable functionality. It is 
also mature enough that new physics and 
chemistry can be added to it by focussing on 
modifying only a few routines. The 
remainder of the components in the 
framework can remain untouched. A “wiring 
diagram” of an SPH application is shown in 
Figure 1. 

The diagram shows a driver component at 
the left that is responsible for controlling 
overall program flow, a set of components in 
the middle that are responsible for reading 
and writing particle configurations and 
integrating the particle equations of motion 
and a variety of components on the right that 
provide support functions and define the 
model physics and chemistry. The Lagrange 

component is the communication layer used to 
parallelize the SPH application. It is built with the 
Global Arrays communication library[6] and is used by 
a large number of the other components, the ReadFile 
and DataMgr components supply the input and data 
manager capabilities described above, and the 
ERSPChem and the SPHFrcAt components are 
responsible for implementing the chemistry and physics 
models that the application is simulating. Adding new 
models to the framework should only require 
modifications or new versions of the force and 
chemistry components. 

An example of a simulation performed using the 
SPH framework is shown in Figure 2. This simulation 
contains approximately 14 million particles and 
represents transport of a non-reactive contaminant 
through a porous medium generated from a Monte 
Carlo simulation of 250 hard spheres. The figure shows 
an isosurface of concentration after the contaminant has 
traversed approximately halfway through the simulation 
cell (flow is in the z-direction). These simulations are 
being used to determine the effective transport constants 
for contaminant transport in subsurface simulations. 
Additional models that are under development include a 
simulation of uranium transport in porous media that 
includes the effects of intragranular diffusion. 

Figure 2. Simulation of non-reactive 
contaminant transport using SPH 
framework. Porous media surface is in 
green, isosurfaces of velocity are red 
and isosurfaces of concentration are 
blue. The visualization is done using 
the VisIt parallel software package. 

Figure 1. Schematic diagram of SPH application 
built from components. 
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4.  The STOMP framework 
Work has also been underway to develop a component version of the Subsurface Transport Over 
Multiple Phases (STOMP) subsurface simulation code[3,4]. This is a continuum code designed to 
perform simulations at the Darcy scale. The degree of componentization is not nearly as advanced as 
for the SPH framework, but a major objective has been achieved by splitting out the grid from the rest 
of the STOMP code as a separate component. At present, the STOMP framework contains only two 
components. One is the grid component and the second is a physics component that contains the rest 
of the STOMP code. 

The grid component contains much of the input associated with problem setup and is responsible 
for creating the grid and adding all the fields required by the simulation to the grid. The grid 

component supports an 
unstructured syntax, 
although currently it is only 
implemented for a structured 
grid. The data mapping 
block refers to the necessity 
of mapping from a structured 
grid to an unstructured 
syntax. At some point in the 
future, if the grid component 
is reimplemented using an 
unstructured grid library, it 
should be possible to plug 
this into the existing 
framework with only modest 
modifications to the 
remaining components. 
Several additional 
components in the remaining 
STOMP code have been 
identified and work is 

underway to separate these from the main code. They include components for physics, chemistry, 
solvers, input, and output. The existing STOMP framework with possible future components is 
illustrated schematically in Figure 3. 

A simulation of contaminant transport at the Hanford IFRC site performed with the existing 
STOMP framework is shown in Figure 4. The figure shows the migration of a plume through an array 
of monitoring wells. 
 

        
Figure 4. STOMP simulation of contaminant transport through an array 
of monitoring wells at the Hanford IFRC site. 
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Figure 3. Schematic diagram of STOMP framework. Green boxes 
indicate future components that are currently contained within 
existing components. 
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Although the existing STOMP framework does not make use of an explicit data manager, the grid 
component can act in a similar way and many of the data concepts outlined above have been 
incorporated into it. 

5.  Summary 
The frameworks described above demonstrate the feasibility of creating component-based applications 
that have a high degree of functional encapsulation, minimal dependencies between components, and 
still maintain high performance. An example of how this can increase programmer productivity is the 
development in the SPH framework of multiple force and input components that can be interchanged 
with each other without modifications to other components. The frameworks were implemented using 
the CCA toolkit, which allows users to configure the application at runtime and supports language 
interoperability between components. The SPH framework has exploited this feature by having 
components written in F90, C, and C++.  

The componentization of the individual SPH and STOMP frameworks is expected to support the 
next stage of this project, which is to integrate these two simulation approaches into a single hybrid 
multiscale simulation that couples a pore scale description using the SPH algorithm with a Darcy scale 
simulation using STOMP. This will require extensions to the existing data model and a more robust 
version of the data manager, as well as development of appropriate coupling components that will link 
the two models together into a single application. 
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