
Process integration, data management, and visualization
framework for subsurface sciences

KL Schuchardt, GD Black, JM Chase, TO Elsethagen and L Sun

Pacific Northwest National Laboratory, PO Box 999 Richland, WA 99320

karen.schuchardt@pnl.gov

Abstract. Applying subsurface simulation codes to understand heterogeneous flow and
transport problems is a complex process potentially involving multiple models, multiple scales,
and spanning multiple scientific disciplines. A typical end-to-end process involves many tools,
scripts and data sources usually shared only though informal channels. Additionally, the
process contains many sub-processes that are repeated frequently and could be automated and
shared. Finally, keeping records of the models, processes, and correlation between inputs and
outputs is currently manual, time consuming and error prone. We are developing a software
framework that integrates a workflow execution environment, shared data repository, and
analysis and visualization tools to support development and use of new hybrid subsurface
simulation codes. We are taking advantage of recent advances in scientific process automation
using the Kepler system and advances in data services based on content management.
Extensibility and flexibility are key underlying design considerations to support the constantly
changing set of tools, scripts, and models available. We describe the architecture and
components of this system with early examples of applying it to a continuum subsurface
model.

1. Introduction
Advancements in computer hardware for massively parallel computation and subsequent storage for
the volumes of data produced have signalled the need for development of subsurface modeling
algorithms, techniques, and codes that fully utilize this new generation of hardware. But, without a
software infrastructure, in the form of a user environment on top of the low-level computational codes
that enables researchers, experimentalists, and site modelers to organize and carry out such complex
investigations, much of this potential to change how subsurface modeling is performed will remain
unrealized. Discovering the critical pieces of this user environment and developing an infrastructure
that integrates them with underlying subsurface modeling codes and supporting tools in an extensible
fashion is the goal of the Process Integration Framework for Subsurface Simulations (PIFSS).

Driving the design of the PIFSS environment is a set of requirements that, if met, allow the
advancements in computing hardware and subsurface modeling software to be fully exploited. The
first requirement is being able to capture and automate complex processes in a standard framework.
The complexity of these processes is a result of different computational models that must be applied
and the volume and variety of data that is associated with each of these models, all across
heterogeneous computing environments. The second requirement is being able to associate the input
and the output from these complex processes for the purpose of verifying correctness of what has been
done, discovering problems in processes as a result of dependent data being updated or corrected, and

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012064 doi:10.1088/1742-6596/78/1/012064

c© 2007 IOP Publishing Ltd 1

being able to easily repeat past simulations. The third requirement is to support shared repositories of
standard data, tools, and even complex processes integrating multiple models and tools. The
development of these shared repositories will allow a wider audience of users including across
disciplines (e.g. continuum and pore scale modelers) and across job functions (e.g. researchers,
experimentalists, and site modelers) to take advantage of better and more appropriate software quickly
and with more accurate results.

2. Approach
In collaboration with subsurface researchers, we have elaborated on the overall research process that
will be applied to the hybrid models currently under development by Scheibe et al. (this issue). This
process model, shown in Figure 1, includes code development, input preparation, analysis, decision
points, and iteration based on analysis. It is our goal to support these processes through an integrated,
extensible framework that enhances repeatability and traceability while fully leveraging advanced
hardware and software tools. While the hybrid model that combines pore scale, continuum, and
potentially other scales is under initial development, we start by examining the component models, the
STOMP[1] continuum code and the SPH[2] pore-scale code, and applying them to calcite
precipitation experiments described in Scheibe et al.

Figure 1. General model of
subsurface simulation workflow.
The workflow includes iterative
processes based on user analysis
and decisions as well as parallel
executions of the models for
parameters studies and sensitivity
studies.

3. Process Integration Framework
The four primary components of the PIFSS architecture as shown in Figure 2 are the workflow
component, data services component, the “organizer” component, and the visualization component.
The workflow and data management components are built on existing open source technologies but
are customized and extended for the purpose of fitting into a more expansive environment tailored
specifically for subsurface modeling. The organizer component has been developed on the PIFFS
project as a central integrating tool for accessing data, executing workflows, and performing analysis
and visualization. Each of these is described in the following sections. Visualization will primarily
involve integrating tools provided by external collaborators, including parallel visualization
capabilities for large data sets, and is therefore not discussed in detail in this paper.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012064 doi:10.1088/1742-6596/78/1/012064

2

Figure 2. PIFSS Component Architecture

3.1. Organizer
The organizer is the central integrating tool of PIFSS providing the user’s view of the information
stored on the data server, the point of access for workflow development and execution, and an
interface to the shared knowledge base of data, tools, and processes. It is written using Python and
wxPython, providing the benefits of a rich client application, extensibility, platform portability, simple
deployment, and fast prototyping and code development. The organizer application communicates
with the content management system through the WebDAV (webdav.org) protocol and web services.
It currently interacts with the data management system to upload and download files, view data and
metadata, and view data version information. In the future, it will support user account creation,
management of access controls, metadata editing, version management, and provenance queries.

In addition to providing a view onto the data server, the organizer provides extensible mechanisms
to access tools that can view or operate on data. For each data type (MIME-type), there is a default
‘open’ action, a dialog to configure tool invocation, and finally, an easily extended class hierarchy that
supports custom integration methods. The latter is used to create a very tight, virtual binding with the
workflow designer tool. Typically, user registered tools make it possible to invoke different analysis
tools or even the same analysis tools with different start-up scripts.

Besides simply invoking tools, it is sometimes necessary to first transform data into a format
understood by the tool. We envision both simple two-step tool invocations (translate, invoke) and
configurable, multi-step workflows to prepare data for analysis or visualization. Finally, we plan to
explore custom views, navigation, and manipulation of workflow execution provenance.

3.2. Workflow
Process workflow is a description of the steps or tasks in a process including dependencies between
those steps such as order of execution and data that needs to “flow” between the steps. The complete
description is in a form that can be saved, executed, and later called back and re-executed. While
workflow technology originated in the business world, it has more recently been applied within the
scientific community. Workflow systems typically consist of two parts: a designer for defining the
process steps, and an execution engine capable of scheduling and invoking the steps. Scientific
workflow poses several unique challenges: the target user of the designer is a scientist who requires an
intuitive abstract representation of process steps not available with existing workflow tools, distributed
execution of frequently long running processes, the need to move large amounts of data, the frequent
evolution of workflows, the need for iteration and debugging, and frequent integration of new tools.
Extending existing tools to meet these challenges and integrating the tools into a more extensive user
environment is a challenge to be addressed on the PIFSS project.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012064 doi:10.1088/1742-6596/78/1/012064

3

The Kepler open-source workflow system has been chosen as the initial workflow tool both for
workflow design and execution. Kepler has been applied to several scientific domains, supports
concurrent execution, and significant effort has gone into building components tailored for scientific
workflow. Figure 3 shows a workflow that concurrently executes a parameter study using the
continuum STOMP model. For each iteration, a parameter value such as porosity is updated over an
incremental range while holding all other parameters constant. Once all iterations and thus the
workflow has completed, the data can be analyzed to choose the parameter value that best matches the
desired model behavior. The two insets to figure 3 are nested workflows that hide the complexity of
moving files and submitting jobs to remote systems and iteration control.

Figure 3. Workflow designer tool
showing an iterative process for running
STOMP. The details of workflow
complexity are hidden from users through
the use of nested workflows (insets).

Kepler supports end user extensibility through the creation of new components that can be used in

a workflow. This typically involves writing java code and registering it with the system. Our goal is
to identify the common, general components or wrappers such that this type of extension mechanism
is rarely if ever needed by the subsurface scientists. One example of a generic component we have
added is the wxPython wrapper. This component enables a scientist to create a wxPython based user
interface (for example to prompt for some model inputs) without explicit knowledge of Kepler
extension mechanisms. Future efforts will center on providing a higher level of abstraction for
defining and invoking research processes.

Kepler has been tightly integrated with the organizer and data server. Any changes to the
workflow description are saved as versions of the workflow, similar to the concept of versioning of
source code, thus providing history of workflow descriptions. Kepler has also been augmented with
an initial provenance capture mechanism. When a workflow executes, a provenance component
receives events from the execution engine including process execution, data moving between
processes, start and stop of execution, etc. This provenance, along with data artefacts (input and
output files), is captured in our provenance store and together with the workflow description fully
document data provenance. This provenance record will play an important role in later work to
support repeatability and verifiability.

3.3. Data, Metadata, and Provenance Services
The PIFSS architecture builds on the capabilities of content management technology to provide data
services. Content Management (CM) is a set of processes and technologies that support the
evolutionary life cycle of digital information. For scientific data, lifecycle support includes storage
and access of arbitrary data in its raw format, versioning, ownership, modification history, support for
arbitrary metadata, provenance, user supplied annotations, and semantic information on the type of
content. We have selected the Alfresco (alfresco.com) CM system, an open-source and open-

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012064 doi:10.1088/1742-6596/78/1/012064

4

standards content repository. Alfresco incorporates favored open-source technologies such as the
Spring (springframework.org), ACEGI for security (acegisecurity.org), Lucene (lucene.apache.org) for
indexing, content management standards, and interface standards such as FTP, WebDAV, web
services, CIFS (http://www.microsoft.com/mind/1196/cifs.asp), and contributions from a strong open
source community.

Alfresco provides a web-client application to manage, configure, and explore the repository as well
as a development framework to extend or add new functionality in support of a project's requirements.
To date, we have tailored Alfresco by adding custom metadata extraction for STOMP data files,
versioning rules, default user account settings, and a special provenance store that enables us to
capture and query provenance about workflow execution histories. The current provenance store is
the SESAME (openrdf.org) Resource Description Framework (RDF). RDF provides a way to express
arbitrary statements about arbitrary resources. In our case, it is used to fully document the processes
that execute in a workflow, parameters and data used, and relationships between processes, data, and
parameters. An initial provenance data model has been developed detailing class and relationship
definitions. The model includes class definitions for workflow elements, such as, Workflow, Port,
Parameter, and Data. Relationship definitions include hasInput, hasOutput, hasParameter, and
isPartOfWorkflowTrace, among others. Provenance can be queried using the graph query language
SPARQL (http://www.w3.org/TR/rdf-sparql-query/), which enables us to begin answering questions
such as “what steps led to the creation of a specific data file” or “if this input data changes, what
results might need to be re-examined”.

3.4. CCA Integration
The new hybrid models supported by PIFSS are being developed using the Common Component
Architecture (CCA) [3] described in Palmer et al. (same issue). CCA-based codes have some
interesting differences from standard codes in that they can be constructed dynamically. Initially, we
plan to treat the CCA codes as “black boxes” that can be submitted as jobs like other codes through a
job submission workflow component. However, we will develop special mechanisms to capture
information about the model components at execution.

4. Summary
Our initial implementation includes individual software components that together make a very
flexible, extensible, and powerful user environment for subsurface simulations for both research and
predictive modeling. However, there are many challenges to be met especially in terms of providing
the right level of abstraction for designing workflows, discovering the most useful level of detail for
workflow provenance capture, and the best ways to present, use, and manipulate provenance. We plan
to harden and deploy the system to experimentalists with limited simulation experience to model the
calcite precipitation problem described in Scheibe et al (this issue) for initial evaluation.

5. Acknowledgements
This work was conducted at the Pacific Northwest National Laboratory, a multiprogram national
laboratory operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RLO
1830.

References
[1] Monaghan, J.J., Smoothed particle hydrodynamics. Reports on Progress in Physics, 2005. 68: p.

1703-1759.
[2] White, M.D., M. Oostrom (2000), STOMP Subsurface Transport Over Multiple Phases, Version

2.0, Theory Guide. Pacific Northwest National Laboratory, PNNL-12030, UC-2010,
Richland, Washington.

[3] Allan, B.A. et al., A component architecture for high-performance scientific computing. The
International Journal of High Performance Computing Applications, 2006. 20: p. 203-231.

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012064 doi:10.1088/1742-6596/78/1/012064

5

