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Abstract 
A number of particle models that are suitable for simulating multiphase fluid flow and biogeochemical 
processes have been developed during the last few decades. Here we discuss three of them: a microscopic 
model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic 
model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively 
easy to add additional physical, chemical and biological processes into particle codes. However, the 
computational efficiency of particle methods is low relative to continuum methods. Multiscale particle 
methods and hybrid (particle–particle and particle–continuum) methods are needed to improve 
computational efficiency and make effective use of emerging computational capabilities. These new 
methods are under development          

 
Introduction 
   The computational methods used to simulate single- and multi-phase fluid flow can be divided 
into two general classes: continuum methods and particle methods. Hybrid particle-continuum 
methods have also been developed, and some models, such as smoothed particle hydrodynamics 
and lattice Boltzmann models, can be considered to be either continuum or particle methods. 
Particle models that can be used to simulate single- and multi-phase fluid dynamics include 
lattice gas models [Frisch et al., 1986], Monte Carlo methods [Bird, 1994], vortex particle 
methods [Cottett and Koumoutsakos, 2000] and the fluid-particle model [Espanol, 1998]. Here 
we focus on a microscopic model - molecular dynamics; a mesoscopic model - dissipative 
particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. 
 
Molecular Dynamics 

Molecular dynamics has been used to simulate both single-phase [Rapaport and Clementi, 
1986, for example] and multiphase [Thompson and Robbins, 1989, for example] fluid dynamics. 
However, the strain rates associated with molecular dynamics simulations are much higher than 
those encountered under typical experimental conditions. The primary reason for this is the very 
short time step, O(10-15 sec) required to obtain accurate results. In the case of a two phase fluid 
composed of simple molecular constituents (water and carbon tetrachloride, for example) a 
simulation with 106 molecules consisting of 109 time steps would simulate the system for a 
physical time of the order of 10-6 sec. Even by today’s standards, this would be a large scale 
molecular dynamics simulation. The characteristic scale of the system, L, is a few tens of 
nanometers, and a strain of at least 10, and in some cases much greater, would be required to 
simulate the characteristics of multiphase fluid flow. Consequently, the strain rate would be 
O(107 sec-1), and the fluid velocity would be a few tens of cm sec-1. The no-slip boundary 
conditions used in continuum hydrodynamics are violated at molecular scales, and the velocity of 
the fluid in contact with a stationary solid surface, the slip velocity SV  is given approximately by 
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ε&SS LV = , where SL  is the slip length and ε&  is the strain rate. Typically slip lengths are on the 
order of a few nanometers. In order for the molecular dynamics simulation to accurately simulate 
fluid flow on large scales, the slip length must be much smaller than the characteristic scale of 
the flow ( LLS << ). Unless artificial no-slip behavior is imposed at the solid-liquid interface, this 
condition is likely to be violated in molecular dynamics simulations. An additional problem 
arises because the structure of liquids adjacent to (within a few molecular diameters from) a solid 
surface is different from the bulk liquid structure, and properties such as the viscosity can also be 
expected to be different. For the hypothetical 106 molecule simulation, on the order of 1/10 of the 
fluid could be significantly effected by these “solid wall” effects. 

The effect of slip at the solid-liquid interface could be reduced by increasing the number of 
molecules used in the simulation. For example, the number of particles could be increased by a 
factor of 1000 (to 109), and the number of time steps reduced by a factor of 1000 (to 106) to 
approximately match the computational resources required for the two simulations. This would 
reduce the effects of slip by a factor of 10. However, the strain rate would increase to 1010 sec-1 
(a value typical of a nuclear explosion) and the fluid velocity would increase to about 3000 m 
sec-1 (the flow would be supersonic). In order for compressibility effects to be small the Mach 
number ( CVMa /= , where V is the fluid velocity and C is the sound velocity in the fluid) must 
be less than 1.0≈ . Clearly, compressibility effects would be very large in this simulation.  

For an experimental model or computer model to quantitatively reproduce the  behavior 
observed in a physical system, all of the important dimensionless ratios in the model and the 
system must either be equal, both very large or both very small. In the case of fluid flow in the 
subsurface, the important dimensionless ratios are: 1. the Reynolds number, 

ηρ /Re VL= ,                                                                                                                             (1) 
where ρ  is the fluid density and η  is the viscosity; 2. The Bond number, 

Γ= /2gLBO δρ ,                                                                                                                         (2) 
whereδρ  is the difference in density between the two fluids, Γ is the interfacial energy per unit 
area and g is the gravitational velocity; and 3. the capillary number, 

./ Γ= VCa η                                                                                                                               (3)  
In most cases )(ReRe C<< , where )(Re C  is the critical Reynolds number above which the flow is 
turbulent.   

Using a viscosity of η = 0.01 g cm-1 sec-1, and a surface tension of  Γ = 75 g sec-2 
(approximate values for water at room temperature) the capillary number, Ca, would have a 
value of about 4 × 10-4 for the hypothetical 106 particle simulation, with a velocity of about 30 
cm sec-1, and for the 109 particle simulation, the capillary number would be about 4. These 
values are typical of multiphase fluid flow in subsurface porous media, but a capillary number of 
4 would be unusually high under typical natural conditions. Similarly, the Reynolds number 
would be approximately 10-2 for the 106 particle simulation and about 102 for 109 particle 
simulation. In both cases, Re would be below the critical Reynolds number, and the flow in the 
model system would be laminar, which is typical of flow in subsurface porous media and small 
aperture fractures. To drive the fluid at a velocity of 30 cm sec-1 in the 106 particle simulation a 
body force corresponding to a gravitational acceleration of the order of 1012 cm sec -2 (about 

,109
Og  where Og is the acceleration in the Earth’s gravitational field) would be required to 

reach an asymptotic flow velocity of 30 cm sec-1. This is much larger than the acceleration 
required to reach a fluid velocity of 30 cm sec-1 in 10-6 sec. For these conditions, the Bond 
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number, for a density difference of 0.1=δρ  g cm-3 is of the order of 0.1. For the 109 particle 
simulation an acceleration of 1014 cm2 sec -1 (about Og1110 ) would be required to sustain a 
velocity of 3000 m sec-1, and under these conditions the Bond number would have a value of the 
order of 1000.  However, an acceleration of the order of 1610 cm2 sec-1 would be required for the 
fluid to reach an average velocity of 3000 m sec-1 in 10-9 seconds, and if this value is used for g, 
a Bond number of O(105) is estimated.  

These estimates of the relevant dimensionless ratios are based on the assumption that the very 
large strain rates do not significantly change the fluid structure and the associated fluid properties, 
such as the viscosity. If this is true, the compressibility effects of large Mach numbers and the 
effects of slip at the solid-fluid interfaces and the influence of the solid surfaces on the 
neighboring fluid structure are not too large, the estimates of the dimensionless ratios indicate 
that it might be possible to use large scale molecular dynamics to simulate multiphase fluid flow 
in confined systems such as fractured and porous subsurface materials. Molecular dynamics 
simulations of water [Balasubramanian et al., 1996] indicate that shear thinning becomes 
significant (O(10%)) only at shear rates of about 1011 sec-1. Another issue is the very rapid 
heating caused by very high strain rates. The rate at which heat is generated per unit volume by 
thermal dissipation is given by )::( εηε &&=Q , where ε& is the second-rank strain-rate tensor and η  
is the fourth rank viscosity tensor. For the 106 particle simulation, with a strain rate of O(107 sec-
1), the heating rate would be of order 106 K sec-1, and the temperature would rise by about 1 K 
during the simulation. For the 109 particle simulation with a strain rate of O(1010 sec-1) the 
heating rate would be of order 1012 K sec-1, and the temperature would rise by about 1000 K 
during the simulation. An effective “thermostat” would be needed to prevent a transition from a 
two phase liquid-liquid or liquid-vapor system to a single phase supercritical fluid and to prevent 
the properties of the fluids from deviating substantially from their initial values. Such 
thermostats are used in most non-equilibrium molecular dynamics simulations [Nose, 1982; 
Hoover 1985; Andersen, 1980]. 

One of the important advantages of molecular dynamics is its ability to simulate the velocity 
dependent contact angle behavior, slip effects at solid-liquid interfaces and the complex 
dynamics in the vicinity of the fluid-fluid-solid contact line, and to couple it with the fluid 
dynamics [Koplik et al., 1988; Thompson and Robbins, 1989; Barret and Bocquet, 1999, for 
example]. 
 
Continuum and Particle Methods 

Under a wide range of flow conditions, fluid dynamics can be simulated quite accurately by 
the Navier-Stokes equation, which consist of a conservation of momentum equation 

fVvVV +∇•∇+∇−∇•−=∂∂ ηρρ Pt/ ,                                                                                (4) 
where V  is the fluid velocity, P is the pressure, and f is the body force per unit volume, and a 
conservation of fluid volume equation 
   .0=•∇ v                                                                                                                                      (5) 
The validity of the Navier-Stokes equations does not depend on details such as molecular sizes, 
shapes and interactions. Instead, it is based on the conservation of momentum and mass on the 
molecular level, and symmetries such as isotropy and Galilean invariance.  Essentially any 
particle-based microdynamics model that conforms to these conservation principles and 
symmetries on a microscopic level, and has Knudsen number, nK , that is much less than unity 
( LK fn /λ= , where fλ  is the particle mean free path) will conform to the Navier-Stokes 
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equation if compressibility effects are small (if mass conservation implies conservation of fluid 
volume).  This suggests that the applicability of molecular dynamics to multiphase fluid flow can 
be improved by using point mass particles (instead of molecules with complex shapes, 
interactions and rotational degrees of freedom) with “soft” particle-particle interactions that 
allow long time steps to be taken. The compressibility of soft sphere fluids is much larger than 
the compressibility of typical molecular liquids, but compressibility effects are still quite small if 
the Mach number is smaller than O(0.1). 
 
Dissipative Particle Dynamics 
The dissipative particle dynamics (DPD) model [Hoogebrugge and Koelman, 1992] is based on 
the idea that particles can be used to represent clusters of atoms or molecules instead of single 
atoms or molecules. Because of the internal degrees of freedom, the particle-particle interactions 
include fluctuating and dissipative components. The DPD equation of motion for the ith particle 
is 
   ext

ijij ij
ext
i

R
i

D
i

C
i

ext
iiii dtdm ffffffffV +=+++=+= ∑ ≠

intint/ ,                                                 (6) 

where C
if  is the conservative force, D

if is the dissipative force, R
if is the random force, ext

if is the 
body force acting on particle i, and ijf  is the force acting on particle i due to interaction with 
particle j. In models for single phase fluids, the conservative force between particles is given a 
simple soft purely repulsive form such as ijijij

C
ij rrS rf ˆ)/1( 0−−=  for 0rrij > and 0=C

ijf  for 

0rrij < , where ijr̂ is the unit vector pointing from particle i to particle j so that  

   ∑ ∑
≠ ≠

−−==
ij ij

ijijij
C
ij

C
i rrS rff ˆ)/1( 0 .                                                                                            (7) 

The dissipative particle-particle interactions are given by ijijijij
DD

ij rW rvrf ˆ)(( ⋅−= γ , where 
|| ijijr r=  so that 

   ijijijij
D

ij

D
ij

ij

D
i rW rvrff ˆ))(( ⋅−== ∑∑

≠≠

γ ,                                                                                   (8) 

and the random forces are given by ijij
RR

ij rW rf ζσ )(=  where ζ is a random variable with a zero 
mean and a unit variance. The random and dissipative particle-particle interactions are related 
through the fluctuation dissipation theorem, which requires that TkB2/2σγ = , where Bk  is the 
Boltzmann constant, and 2))(()( rWrW RD = . The combination of dissipative and fluctuating 
forces, related by the fluctuation-dissipation theorem [Kubo, 1966; Espanol and Warren, 1995] 
acts as a thermostat, which maintains the temperature of the system, measured through the 
average kinetic energy of the particles in a coordinate system moving with the fluid, at a 
temperature of T, providing that the time step used in the simulation is small enough. 
Consequently, the DPD model can be regarded as a form of thermostatted nonequilbrium 
molecular dynamics with a soft interaction potential [Soddermann et al. 2003]. 
   When DPD models are used to simulate liquids, the particles overlap extensively (there are 
several tens of particles in a volume of 3/4 3

orπ ). As the temperature is lowered from a large 
value, the DPD system undergoes a Kirkwood-Alder transition to a solid [Kirkwood 1939, Alder 
and Wainright, 1962]. The transition temperature depends on the magnitude of the thermal 
energy relative to the interaction energy. As the number of atoms or molecules, ,pN  represented 
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by the DPD particle increases, the thermal energy, 2/TkB  per degree of freedom remains 
constant while the DPD particle-particle interaction increases in magnitude.  This drives the 
system through the Kirkwood-Alder transition and limits the size of the cluster of atoms or 
molecules that the DPD particles can represent.  
   In the standard DPD model, the particle-particle interaction is purely repulsive. Multi- 
component, multi-phase systems can be simulated by labeling the particles (1,  ….) to identify 
which component they represent, and using different repulsive interaction strengths (equation 7) 
( K221211 ,, SSS ) with 12221211 , SSSS <<<<  etc. to bring about phase separation. However, this 
approach cannot be used to simulate single component two phase (liquid – vapor) systems. An 
alternative approach is to use a combination of short range repulsive interactions and (relatively) 
long range attractive interactions [Liu et al., 2007]. This borrows from the physical origins of 
phase separation in single component fluids (the combination of short range repulsive and long-
range attractive atom-atom and molecule-molecule interactions [van der Waals, 1873]). A 
combination of short range repulsive and relatively long range attractive interactions between 
fluid particles and particles used to represent confining solid materials can also be used to 
realistically simulate different wetting conditions (velocity dependent contact angle angles and 
contact line dynamics). In addition a combination of “bounce back” boundary conditions and 
particle–particle interactions can be used to reduce slip at solid-liquid interfaces to negligible 
levels. These features were used in the simulation shown in Figure 1. 
 

             
Figure 1: Four stages in a two-dimensional dissipative particle dynamics simulation of the 
penetration of a wetting fluid through a fracture junction 
 
    DPD models have been used to simulate a variety of soft condensed matter systems. For 
example, polymer molecules can be simulated by connecting together a string of DPD particles 
using harmonic springs [Groot and Madden, 1998, for example], finitely extensible nonlinear 
elastic (FENE) links [Fan et al., 2003, for example], or other links.  Concentrated colloids [Boek 
et al., 1997, for example] amphiphilic vesicles [Yamamo et al., 2002, for example] and 
membranes [Li et al., 2004] have also been simulated using DPD models. When DPD models are 
used to simulate suspensions of colloidal particles or polymer solutions, gels etc., the particles 
are used to represent both the particles or polymers and the surrounding fluid. As a consequence 
particle- particle and both intramolecular and intermolecular hydrodynamic interactions are 
automatically included.  From a rheo-mechanical point of view, a wide range of biological 
systems lie within the realm of soft condensed matter physics. These include biofilm that forms 
under nutrient rich conditions caused by organic contaminants and/or the addition of nutrient to 
accelerate natural bioremediation contains high concentrations of colloids (living and dead cells) 
and polymers (polysaccharides and other polymers secreted by subsurface microorganisms). In 
the SciDAC project on “Hybrid numerical methods for multiscale simulations of biogeochemical 
processes” we will build on  earlier DPD work by including processes such as growth, breaking 
of polymer molecules and their detachment from and /attachment to cells.   
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Smoothed Particle Hydrodynamics 
   Smoothed particle hydrodynamics (SPH) was introduced more than a quarter of a century ago 
to simulate astrophysical fluid dynamics [Lucy, 1977; Gingold and Monaghan 1977]. It is a fully 
Lagrangian particle method that has been used extensively to simulate the behavior of materials 
(both solids and liquids) subjected to large strains. SPH is based on the idea that a continuous 
field, )(rA  can be represented by a superposition of smooth bell-shaped functions, |)(| iW rr − , 
(usually referred to as the smoothing function or weighting function) centered on a set of point 
particles, }{ ir , and the gradient of the field is given by the same superposition of the gradients of 
the smoothing functions. A set of extensive properties, such as the particle mass, ,im  is 
associated with each particle, and in this case, the mass can be though of as being smoothed or 
smeared out by the smoothing function so that the contribution of particle i to the fluid density 
field, )(rρ is given by |)(|)( iii Wm rrr −=ρ . The smoothing function is normalized so 

that 1)( =∫ rr dW . Consequently, the density field is given by 

   ∑∑ −==
i

iii i Wm |)(|)()( rrrr ρρ .                                                                                         (9) 

Other intensive fields, ),(rA  are given by1 
   |)(|)/(|)(|)()( ii

i
ii

i
ii

i

i WAmWaAA rrrrrr −=−== ∑∑∑ ρ ,                                               (10) 

and the gradient of the intensive field, ,A∇  is given by 
   ∑ −∇=∇

i
iiii WAmA |)(|)/()( rrr ρ .                                                                                        (11) 

The SPH equations for continuous fields can also be expressed in terms of the particle number 
density, ∑ −=

i
ii Wn |)(| rr , as 

   |)(|)/)( ii
i

i WnAA rrr −=∑                                                                                                     (12) 

and  
   ∑ −∇=∇

i
iii WnAA |)(|)/()( rrr .                                                                                             (13) 

The SPH equation for the flow of an inviscid fluid is based on the equation of motion 
    ρ// Pdtd −∇=V ,                                                                                                                    (14) 
where V is the fluid velocity and P∇ is the pressure gradient. The pressure field is obtained from 
the density field via the equation of state and the identity ρρρρ ∇+∇=∇ )/()/(/ 2PPP . The 
resulting equation of motion is 

                                                 
1 The standard SPH formulation [Gingold and Monaghan, 1977; Lacy, 1977] is based on  the identity 

∫ −= ')'()'()( rrrrr dAA δ , where r  and 'r  are position vector and δ is the Kronecker delta function. If the δ 

function is replaced by the smoothing function )'( rr −w , ∫ −= ')'()'()( rrrrr dwAA , where ∫ = 1)( rr dw , 

)(rA is a smoothed version of )'(rA , and if the field A is defined in a set of points that carry masses im , the 

density field is given by ∑ −=
i

i wm )'()( rrrρ  and ∑ −=
i

iii wAmA )'()/()( rrr ρ , which is equation (10).  
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This is one of many possible SPH formulations of the Euler equation for inviscid fluid flow. The 
point masses used in SPH simulations can be thought of in terms of a moving (Lagrangian) 
disordered grid, and there are many ways of solving differential equations using SPH, just as 
there are many possible ways of formulating fluid flow equations using regular grids. In reality, 
the SPH equations cannot be used to simulate the Euler equation because the particles in an SPH 
simulation move between regions with different velocities thus creating a viscosity in the same 
way that a viscosity is created in molecular dynamics simulations2.  
   If a body force, such as the effects of gravity acting on the fluid density is added, the equation 
of motion becomes 

    iji
j j

j

i

i
i W

PPdtd frrV +−∇⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= ∑ |)(|/ 22 ρρ

,                                                                           (16) 

and for gravity driven flows gf ii m= , where g is the gravitational acceleration. 
   Since the first applications of SPH to astrophysical fluid dynamics, where viscous forces do not 
play a significant role, it was almost 20 years until the effects of viscosity were included in SPH 
simulations (Takeda et al, 1994, Posch et al., 1995), apart from the addition of “artificial” 
viscosity to improve numerical stability. In SPH simulations of fluid mechanics, it is usual to add 
an SPH expression for the effects of viscosity on the fluid flow, and the equation of motion 
becomes [Zhu et al., 1977] 
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(17) 
Here iv  is the velocity of particle i and iμ is the fluid viscosity at particle i, (the viscosity can 
vary spatially in multiphase and/or multicomponent systems). The corresponding equation of 
motion based on the particle number density is 
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In theoretical work on SPH it is often convenient to use a Gaussian form for the smoothing 
function. However, in numerical investigations a variety of spline functions with a finite range, h, 
have been used, and the smoothing function, |)(| rW , in the above equations may be replaced by 

)|,(| hW r  to emphasize this.  
   To simulate fluid flow in confined  systems such a porous media and fractured porous media it 
is convenient to use stationary particles to represent the confining solid phase with a combination 
of short range repulsive interaction and (relatively) long range interactions between the liquid 
particles and the solid particles. Bounce back boundary conditions (reversal of particle 
velocities) can be used to return to the fluid particles that penetrate to far into the solid, and if 
                                                 
2 SPH is isomorphic with molecular dynamics using an embedded atom potential [Hoover, 1998]. In SPH 
simulations, viscosity  is generated in the same manner as it is in atomic fluids (with no thermally accessible internal 
degrees of freedom and no viscous particle-particle interactions) and the corresponding molecular dynamics models,.    
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this is done only a thin layer of solid particles near the solid-fluid interface is needed. A similar 
approach can be used to simulate multiphase fluid flow by labeling the particles to indicate 
which fluid component they represent and using different interaction potentials ( K221211 ,, UUU , 
etc. for multi-component fluids). Figure 2 illustrates a two-dimensional simulation carried out in 
this manner. In addition, a similar approach can be used to simulate unconfined liquid drops 
(single component, two phase fluids).  
 

 
 
Figure 2: Three stages in a 2-dimensional simulation of the gravity driven penetration of a dense 
non-wetting fluid into an anisotropic porous medium 
 
Particle methods have a number of advantages: they rigorously conserve mass; they very 
accurately conserve momentum; they are isotropic; they are Galilean invariant; and relatively 
little code development effort is required to add additional physics to the model. In addition, they 
exhibit qualitatively, but not generally quantitatively, correct contact line/contact angle behavior. 
However, particle models must be calibrated (the model interfacial energies and the fluid 
viscosities cannot be calculated theoretically), and their computational efficiency is low 
(sometimes very low) compared with continuum grid-based methods.   
    The development of multiscale methods for the particle simulation of fluids is very much in its 
infancy [Kitsionas and Whitworth, 2002, Lastiwka et al., 2005, Alimi et al., 2003]. In the case of 
the smoothed particle hydrodynamics model, the particles can be thought of as the nodes of an 
unstructured Lagrangian grid, and it is natural to think of particle refinement at a direct analog to 
mesh refinement.  
   In many applications, adaptive particle refinement will be needed, and this will involve particle 
fragmentation (or insertion) where increased resolution is needed and particle coalescence (or 
removal) where improved efficiency can be achieved without sacrificing accuracy. Particle 
smoothing lengths can also be changed. Clearly, particle refinement/coarsening should conform 
to the conservation principles and symmetries discussed above. A variety of particle – continuum 
hybrid methods have been developed [Flekkoy et al., 2000, Nie et al., 2004]. In general, there is 
an overlap region in which the solutions of the hybrid and continuum methods are matched. 
Hybrid particle methods such as MD/SPH, MD/DPD/SPH and DPD/SPH could also be used to 
improve computational efficiency for processes that depend on microscopic details near surfaces 
and interfaces. 
   Fragmentation will increase the number of degrees of freedom, and it is likely that the 
positions and velocities of the new particles will not be uniquely defined. A similar problem is 
encountered in hybrid molecular-continuum models where the number of degrees of freedom 
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associated with the particles in a grid volume of the continuum model in the overlap region 
where the particle and continuum models are matched is much larger than the degrees of 
freedom associated with the continuum fluid in the same grid volume.  
  
Summary 
Although particle methods are less computationally efficient than grid-based continuum equation 
solvers, they have a number of important advantages for subsurface multiphase fluid flow and 
biogeochemical processes. These include rigorous mass conservation, momentum conservation, 
Galilean invariance and isotropy. In addition there is no need for interface tracking, realistic, but 
not necessarily accurate, dynamic contact angle behavior is obtained, and additional physical, 
chemical and biological processes can be added with relatively little code development effort. 
The methods developed for molecular dynamics can be used to efficiently implement other 
particle methods on large parallel computing systems.    
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