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Hybrid Multiscale Modeling Pore-Scale Modeling Using Particle and Grid Methods

The images below schematically show the concept and a possible implementation of the hybrid multiscale modeling
approach. Figure 1 is a photograph of an intermediate-scale quasi-2D experimental flow cell

Figure 6

(courtesy of George Redden, Idaho National Laboratory). In this experiment, two solutes are injected into Figures 5 and 6 are based on simulated fluid flow
the system along the bottom boundary and flow upward, mixing along the centerline. A reaction between the through a complex 3D pore geometry. The simulation |
two solutes forms the mineral CaCO3 (calcite), shown in the photo as a narrow whitish band. The mixing zone, method is “Smoothed Particle Hydrodynamics” (SPH) P~
within which concentration gradients are very strong, is very narrow, and the precipitated mineral inhibits solute as described in Tartakovsky et al. (2007a; 2007b). . =i
mixing leading to strong coupling between the reaction and transport processes. While a grid-based porous Visualizations were created by Chad Jones and . ) 7 1
media continuum approach is appropriate for most of the domain (Figure 2), the processes in the mixing zone Kwan-Lui Ma of the SciDAC Institute for Ultrascale
are better described by a grid-free particle method (Smoothed Particle Hydrodynamics or SPH as shown in Visualization at UC Davis. =R 3 v | |
Figure 3) which is able to explicitly model the geometry of grains and pore spaces. Red and green colors B
represent the two solutes; green particles indicate locations of precipitated minerals, and black circles denote Tartakovsky A. M., P. Meakin, T. D. Scheibe, and R. M. Eichler West, 2007a.

: : - : : 1 : : " "Simulations of reactive transport and precipitation with smoothed particle
soll grains. Model hybridization requires definition of an algorithm for matching conditions at the sub-model hydrodynamics.” Journal of Computational Physics, 222(2):654-672.

domain boundaries that enforces conservation of mass (both fluid and solutes). B A M B Meskin T Schelbe. and B. B, Wood. 2007
artakovsky, A. M., P. Meakin, T. Scheibe, and B. D. Wood, :

“A smoothed particle hydrodynamics model for reactive transport and

mineral precipitation in porous and fractured porous media,” Water
Resources Research, 43(5): Art. No. W05437, doi:10.1029/2005WR004770.

i
)

. Figure 2
b Na:co: 4 b cac. A
Figure 1

Pore-scale models are also being developed using grid-based
methods implemented in computational fluid dynamics (CFD)
codes. Figure 7 shows a representation of 100 monodisperse
spheres created by a synthetic sphere packing model.

Figure 8 shows a three-dimensional rendering of porous media
grains (blue mesh planes) with colored particles indicating 3D
pathlines in the computed flow field (visualization created by
John Serkowski, PNNL).
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This project is developing and applying a computational framework for hybrid modeling of challenging subsurface
reactive transport problems. In the hybrid modeling approach (also called adaptive algorithms or adaptive physics),
two or more models at different scales, and with fundamentally different representations of physics, chemistry, and
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. . . ) Figure 5
biology are coupled and executed together. The more computationally expensive model (in this case, a pore-scale g
model) is used only in that portion of the model domain where it is needed and linked to a less demanding model
over the remainder of the domain. | )
Relevance to Geological Carbon Sequestration :
Figure 10
Basalt calcite
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